152 research outputs found

    Dependence of transport coefficients of Yb(Rh1x_{1-x}Cox_x)2_2Si2_2 intermetallics on temperature and cobalt concentration

    Full text link
    Dependence of transport coefficients of the Yb(Rh1x_{1-x}Cox_x)2_2Si2_2 series of alloys on temperature and cobalt concentration is explained by an asymmetric Anderson model which takes into account the exchange scattering of conduction electrons on ytterbium ions and the splitting of 4ff-states by the crystalline electric field (CEF). The substitution of rhodium by cobalt is described as an increase of chemical pressure which reduces the exchange coupling and the CEF splitting. The scaling analysis and numerical NCA solution of the model show that the effective degeneracy of the 4ff-state at a given temperature depends on the relative magnitude of the Kondo scale and the CEF splitting. Thus, we find that dependence of the thermopower, S(T)S(T), on temperature and cobalt concentration can be understood as an interplay of quantum fluctuations, driven by the Kondo effect, and thermal fluctuations, which favor a uniform occupation of the CEF states. The theoretical model captures all the qualitative features of the experimental data and it explains the evolution of the shape of S(T)S(T) with the increase of cobalt concentration.Comment: 8 pages, 4 figure

    Hartree-Fock study of electronic ferroelectricity in the Falicov-Kimball model with ff-ff hopping

    Full text link
    The Hartree-Fock (HF) approximation with the charge-density-wave (CDW) instability is used to study the ground-state phase diagram of the spinless Falicov-Kimball model (FKM) extended by ff-ff hopping in two and three dimensions. It is shown that the HF solutions with the CDW instability reproduce perfectly the two-dimensional intermediate coupling phase diagram of the FKM model with ff-ff hopping calculated recently by constrained path Monte Carlo (CPMC) method. Using this fact we have extended our HF study on cases that have been not described by CPMC, and namely, (i) the case of small values of ff-electron hopping integrals, (ii) the case of weak Coulomb interactions and (iii) the three-dimensional case. We have found that ferroelectricity remains robust with respect to the reducing strength of coupling (ff-electron hopping) as well as with respect to the increasing dimension of the system.Comment: 13 pages, 5 figure

    F-electron spectral function of the Falicov-Kimball model in infinite dimensions: the half-filled case

    Full text link
    The f-electron spectral function of the Falicov-Kimball model is calculated via a Keldysh-based many-body formalism originally developed by Brandt and Urbanek. We provide results for both the Bethe lattice and the hypercubic lattice at half filling. Since the numerical computations are quite sensitive to the discretization along the Kadanoff-Baym contour and to the maximum cutoff in time that is employed, we analyze the accuracy of the results using a variety of different moment sum-rules and spectral formulas. We find that the f-electron spectral function has interesting temperature dependence becoming a narrow single-peaked function for small U and developing a gap, with two broader peaks for large U.Comment: (13 pages, 11 figures, typeset in RevTex 4

    Phase Separation and Charge-Ordered Phases of the d = 3 Falicov-Kimball Model at T>0: Temperature-Density-Chemical Potential Global Phase Diagram from Renormalization-Group Theory

    Full text link
    The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The CO phases occur at and near half filling of the conduction electrons for the entire range of localized electron densities. The phase boundaries are second order, except for the intermediate and large interaction regimes, where a first-order phase boundary occurs in the central region of the phase diagram, resulting in phase coexistence at and near half filling of both localized and conduction electrons. These two-phase or three-phase coexistence regions are between different charge-ordered phases, between charge-ordered and disordered phases, and between dense and dilute disordered phases. The second-order phase boundaries terminate on the first-order phase transitions via critical endpoints and double critical endpoints. The first-order phase boundary is delimited by critical points. The cross-sections of the global phase diagram with respect to the chemical potentials and densities of the localized and conduction electrons, at all representative interactions strengths, hopping strengths, and temperatures, are calculated and exhibit ten distinct topologies.Comment: Calculated density phase diagrams. Added discussions and references. 14 pages, 9 figures, 4 table

    Perturbation expansion for 2-D Hubbard model

    Full text link
    We develop an efficient method to calculate the third-order corrections to the self-energy of the hole-doped two-dimensional Hubbard model in space-time representation. Using the Dyson equation we evaluate the renormalized spectral function in various parts of the Brillouin zone and find significant modifications with respect to the second-order theory even for rather small values of the coupling constant U. The spectral function becomes unphysical for UW U \simeq W , where W is the half-width of the conduction band. Close to the Fermi surface and for U<W, the single-particle spectral weight is reduced in a finite energy interval around the Fermi energy. The increase of U opens a gap between the occupied and unoccupied parts of the spectral function.Comment: 17 pages, 11 Postscript figures, Phys. Rev. B, accepte

    Slave boson theory of the extended Falicov-Kimball model

    Full text link
    The extended Falicov-Kimball model, with both an on-site hybridization potential and dispersive narrow band, is examined within the saddle-point approximation to the Kotliar-Ruckenstein slave boson theory. We first set the hybridization potential to zero and find that the phase diagram depends strongly upon the orbital structure: for degenerate orbitals, a correlated-insulating state is found at sufficiently strong interaction strengths, whereas a finite orbital energy difference can lead to discontinuous valence transitions. The obtained phase diagram is very sensitive to the presence of a finite hybridization potential. As in Hartree-Fock theory, we find an enhancement of the hybridization by the inter-orbital Coulomb repulsion. The more precise treatment of correlation effects, however, leads to large deviations from the Hartree-Fock results. In the limit of vanishing hybridization an excitonic insulator state is only found when the orbitals are degenerate, which restricts this phase to a much smaller parameter space than in other available mean-field theories.Comment: 23 pages, 10 figure

    Densities of states of the Falicov-Kimball model off half filling in infinite dimensions

    Full text link
    An approximate analytical scheme of the dynamical mean field theory (DMFT) is developed for the description of the electron (ion) lattice systems with Hubbard correlations within the asymmetric Hubbard model where the chemical potentials and electron transfer parameters depend on an electron spin (a sort of ions). Considering a complexity of the problem we test the approximation in the limiting case of the infinite-UU spinless Falicov-Kimball model. Despite the fact that the Falicov-Kimball model can be solved exactly within DMFT, the densities of states of localized particles have not been completely investigated off half filling. We use the approximation to obtain the spectra of localized particles for various particle concentrations (chemical potentials) and temperatures. The effect of a phase separation phenomenon on the spectral function is considered.Comment: 9 pages, 11 figures, submitted to Phys. Rev.

    Thermoelectric effects in correlated quantum dots and molecules

    Full text link
    We investigate thermoelectric properties of correlated quantum dots and molecules, described by a single level Anderson model coupled to conduction electron leads, by using Wilson's numerical renormalization group method. In the Kondo regime, the thermopower, S(T)S(T), exhibits two sign changes, at temperatures T=T1T=T_{1} and T=T2>T1T=T_{2}>T_{1}. We find that T2T_{2} is of order the level width Γ\Gamma and T1>TpTKT_{1}> T_{p}\approx T_{K}, where TpT_{p} is the position of the Kondo induced peak in the thermopower and TKT_{K} is the Kondo scale. No sign change is found outside the Kondo regime, or, for weak correlations, making a sign change in S(T)S(T) a particularly sensitive signature of strong correlations and Kondo physics. For molecules, we investigate the effect of screening by conduction electrons on the thermoelectric transport. We find that a large screening interaction enhances the figure of merit in the Kondo and mixed valence regimes.Comment: 4 pages, 3 figures; to appear in the Proceedings of the International Conference on Strongly Correlated Electron Systems, Santa Fe 2010; revised version: typos corrected and references update
    corecore